Xuanyao Fong received the Ph.D. and B.Sc. degrees in electrical engineering from Purdue University, West Lafayette, IN, in 2014 and 2006, respectively.

From January to August 2007, he was an Intern Engineer with Advanced Micro Devices, Inc., Boston Design Center, Boxboro, MA. He was a Research Assistant and then Postdoctoral Research Assistant to Professor Kaushik Roy in the Nanoelectronics Research Laboratory, Purdue University, from August 2007 to May 2015. He was then a Research Scientist in the Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR) from June 2015 to November 2016. Currently, he is an Assistant Professor in the Department of Electrical & Computer Engineering at the National University of Singapore. His research interests include devices-to-systems co-design methodologies for Si and non-Si nanoelectronics; design of high performance and ultralow power logic and memory systems using spintronic devices, circuits, and architectures; and non-Boolean and analog computing paradigms using emerging technologies.


  1. Z. Zhu, K. Cai, J. Deng, V. P. K. Miriyala, H. Yang, X. Fong, and G.-C. Liang, “Electrical generation and detection of terahertz signal based on spin-wave emission from ferrimagnets,” under review [PDF]
  2. S. Samanta, K. Han, S. Xu, X. Gong, and X. Fong, “Impact of Ti Interfacial Layer on Resistive Switching Characteristics at sub-µA Current Level in SiOx-Based Flexible Cross-Point RRAM,” accepted for presentation at IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Jul. 2019, [PDF]
  3. S. Samanta, P. Zhang, U. Chand, K. Han, S. Xu, Y. Li, Aaron V.-Y. Thean, X. Gong, and X. Fong, “Robust Mobility and Variability Improvement of Indium-Gallium-Zinc-Oxide (IGZO) Thin–Film Transistor with E-beam Deposited SiO2 Passivation Layer,” in Proceedings of 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Jul. 2019, Session 5-3 [PDF]
  4. S. Samanta, X. Gong, P. Zhang, K. Han, and X. Fong, “Bipolar resistive switching and synaptic characteristic modulation at sub-µA current level using novel Ni/SiOx/W cross-point structure,” Journal of Alloys and Compounds, vol. 805, pp. 915-923, Oct. 2019, doi:110.1016/j.jallcom.2019.07.050 [PDF]
  5. V. P. K. Miriyala, Z. Zhu, G.-C. Liang, and X. Fong, “Spin-wave mediated interactions for Majority Computation using Skyrmions and Spin-torque Nano-oscillators,” Journal of Magnetism and Magnetic Materials vol. 486, art. 165271, Sep. 2019, doi:10.1016/j.jmmm.2019.165271 [PDF]
  6. Z. Zhu, J. Deng, G.-C. Liang, and X. Fong, “Voltage-input spintronic oscillator based on competing effect for extended oscillation regions,” Journal of Applied Physics vol. 125, iss. 18, art. 183902, May 2019, doi:10.1063/1.5092881 [PDF]
  7. V. P. K. Miriyala, X. Fong, and G.-C. Liang, “Influence of Size and Shape on the Performance of VCMA-Based MTJs,” IEEE Transactions on Electron Devices vol. 66, iss. 2, pp. 944-949, Feb. 2019, doi:10.1109/TED.2018.2889112 [PDF]


  1. S. Samanta, K. Han, S. Xu, X. Gong, and X. Fong, “Digital and Analog Resistive Switching Characteristics under 200 nA Current Level using Novel Ni/SiOx/W 16×16 Cross-point Architecture,” in Proc. of 49th IEEE Semiconductor Interface Specialists Conference (SISC), Dec. 2018, 5.1, [PDF]
  2. Z. Zhu, X. Fong, and G.-C. Liang, “Damping-like spin-orbit-torque-induced magnetization dynamics in ferrimagnets based on Landau-Lifshitz-Bloch equation,” Journal of Applied Physics vol. 124, iss. 19, art. 193901, Nov. 2018, doi:10.1063/1.5048040 [PDF]
  3. L. Xiang, Y. Wang, P. Zhang, X. Fong, X. Wei, and Y. Hu, “Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices,” Nanoscale vol. 10, iss. 46, pp. 21857-21864, Oct. 2018, doi:10.1039/C8NR08259F [PDF]
  4. V. P. K. Miriyala, X. Fong, and G.-C. Liang, “FANTASI: A Novel Device‐to‐Circuits Simulation Framework for Fast Estimation of Write Error Rates in Spintronics,” in Proc. of International Conference on Simulation of Semiconductor Processes and Devices 2018, Sep. 2018, pp. 53-57, doi:10.1109/SISPAD.2018.8551656 [PDF]
  5. Z. Zhu, X. Fong, and G.-C. Liang, “Theoretical proposal for determining angular momentum compensation in ferrimagnets,” Physical Review B vol. 97, iss. 18, art. 184410, May 2018, doi:10.1103/PhysRevB.97.184410 [PDF]
  6. J. Deng, X. Fong, and G.-C. Liang, “Electric-field-induced three-terminal pMTJ switching in the absence of an external magnetic field,” Applied Physics Letters vol. 112, iss. 25, art. 252405, Jun. 2018, doi:10.1063/1.5027759 [PDF]
  7. S. Deb, A. Chattopadhyay, A. Basu, and X. Fong, “Domain Wall Motion-based XOR-like Activation Unit with A Programmable Threshold,” in Proc. of International Joint Conference on Neural Networks 2018, Jul. 2018, pp. 463-470, doi:10.1109/IJCNN.2018.8489146 [PDF]
  8. S. Deb, T. Vatwani, A. Chattopadhyay, A. Basu, and X. Fong, “Domain Wall Motion-based Dual-Threshold Activation Unit for Low-Power Classification of Non-Linearly Separable Functions,” IEEE Transactions Biomedical Circuits and Systems vol. 12, iss. 6, pp. 1410-1421, Aug. 2018, doi:10.1109/TBCAS.2018.2867038 [PDF]

For complete list of published articles, click here

Dr. Fong received the AMD Design Excellence Award at Purdue in 2008, and the best paper award at the 2006 International Symposium on low power electronics and design.