Triboelectric Self-Powered Wearable Flexible Patch as 3D Motion Control Interface for Robotic Manipulator

Triboelectric nanogenerators and sensors can be applied as human− machine interfaces to the next generation of intelligent and interactive products, where flexible tactile sensors exhibit great advantages for diversified applications such as robotic control. In this paper, we present a self-powered, flexible, triboelectric sensor (SFTS) patch for finger trajectory sensing and further apply the collected information for robotic control. This innovative sensor consists of flexible and environmentally friendly materials, i.e., starch-based hydrogel, polydimethylsiloxane (PDMS), and silicone rubber. The sensor patch can be divided into a two-dimensional (2D) SFTS for in-plane robotic movement control and a one-dimensional (1D) SFTS for out-of-plane robotic movement control. The 2D-SFTS is designed with a grid structure on top of the sensing surface to track the continuous sliding information on the fingertip, e.g., trajectory, velocity, and acceleration, with four circumjacent starchbased hydrogel PDMS elastomer electrodes. Combining the 2D-SFTS with the 1D-SFTS, three-dimensional (3D) spatial information can be generated and applied to control the 3D motion of a robotic manipulator, and the real-time demonstration is successfully realized. With the facile design and very low-cost materials, the proposed SFTS shows great potential for applications in robotics control, touch screens, and electronic skins.

Researcher / Author: Tao Chen, Qiongfeng Shi, Minglu Zhu, Tianyiyi He, Tianyiyi He,  Lining Sun, Lei Yang, and Chengkuo Lee.

ACS Nano,2018,12 (11),DOI:10.1021/acsnano.8b06747;

For full publication paper, email:

All News